Compressing Natural Materials

Screen Shot 2013-03-05 at 8.16.44 AM.png

  • The Problem(s)
    • Millions of children die a year in impoverished counties alone. The cause? Inhaling emissions from indoor cooking stoves.
    • Wood fuel has become a huge issue. Countries like Haiti are suffering from deforestation.
    • Third-World countries also struggle in finding accessible/affordable/and efficient means of building.
    • There is a surplus of agricultural waste all around the world.

  • The Solution
    • Compressing agricultural waste and natural materials to create fuel-briquettes and building technology.

DesignMap.jpg

Check out this video of Pete and Amy Smith making fuel briquettes out of agricultural waste!

http://youtu.be/LqI63IEg3M

Original Goals

  • Create both structural bricks and fuel briquettes comprised of natural materials
  • Examine the wide scope of potential natural materials
  • Work with the prickly pear group to use prickly pear juice as a natural binder
  • Test for strength, water solubility, flammability, etc.
  • Learn more about natural materials

Lab Documentation & Photos:

Tuesday 1/29/2013

In our initial lab, we learned the shop and sought out the hydraulic press with which we would compress our bricks. Once we had idea of what our size limits were, we developed a plan for how to compress the materials, including what sort of brick mold we would use. We discovered some unused steel framing material that would work perfectly, so during this lab we measured, cut, ground and tested the mold for future brick compression. See photos below:

Cutting steel with a dull blade and no coolant on the horizontal band saw.

IMG_2658.jpg

Finishing the cut.

IMG_2662.JPG

Precision cut required for the insert.

IMG_2669.JPG

Grinding down the excess steel.

IMG_2671.JPG

The photo below shows the 12-ton hydraulic press we used for the reminder of the quarter. We covered the brick mold with towels in order to keep the mud from shooting across the shop, then proceeded to compress our first brick.

Testing the hydraulic press.

IMG_2676.jpg

Success! First (muddy) brick has been compressed! Now to test different materials.

IMG_2678.JPG

Tuesday 2/5/2013

In this lab, we finally had a working compressor, a brick mold, and materials to work with. We started with corn husks, a major source of agricultural waste, as our primary material in the creation of bricks. Our initial brick contained corn husk that was cut into long strips, and was mixed with Prickly Pear juice as a potential binding agent. This brick held together fairly well, but there was obviously room for improvement. One of the failures here was that the material wanted to spring back to its original shape due to elastic properties, which slowly broke the brick apart. See photos below:

Sorting of materials.

IMG_3053.jpg

Mixing with the Prickly Pear as a potential binding agent.

IMG_3058.JPG

Compressing the hell out of the materials.

IMG_3061.jpg

Trial and error. In order to effectively make a brick that will maintain uniform shape, we found that rotting and shredding the materials helped dramatically.

IMG_3062.jpg

Tuesday 2/12/13

During this lab, we took time to set aside materials for future labs in an organized manner. We placed plant material in water to soak and rot for a week, as well as prepared more plant material for the day’s compression. We decided to chop the material into smaller pieces to see if it would hold together better. We also drilled holes in the bottom plate to allow moisture to be removed from the compression process, which would theoretically keep the together more easily. Finally, we were given multiple types of Prickly Pear juice from the group working with the plant, and discussed ideas on what should be tested once we had rotten plant material. See photos below:

Prickly Pear group provided us with a few variations of the juice which we will test with different materials to see if it works as a binding agent.

securedownload.jpeg

Prepping the base plate for drilling.

IMG_3043.JPG

Tuesday 2/19/13

In this lab, we put a combination of ideas into play. First, we brought a Magic Bullet to shred the plant material into tiny pieces. Second, we drilled additional holes into the sides of the brick mold to help with moisture removal. Third, we used the rotten plant material to test the elasticity of the plant. The theory is this: plants such as corn have lignin bonds within them which help provide strength to the structure. These lignin bonds can be broken down by rotting the plant material in water for several days, which in turn causes the plant to lose structural strength and therefore makes it easier to work with when compressing the plant into a certain formation. Finally, we decided to work with the variety of Prickly Pear juice to test the binding potential. See photos below:

The Magic Bullet.

IMG_3712.JPG

Additional holes drilled successfully.

IMG_3719.JPG

Rotten plant material.

IMG_3717.jpg

A solid brick after shredding the plant material with the Magic Bullet.

IMG_3728.JPG

Tuesday 2/26/13

During this lab, we started experimenting with a number of new materials in hopes it would help strengthen and solidify our bricks. We also tested the durability and flammability of bricks that we had already compressed, in hopes to improve our tactics.

New & Improved Bricks

Allbricks.png

Finally, we began to produce something that fairly resembled bricks. We tried numerous combinations, all of which consist of a few new techniques:

  • Shredding the material
  • Rotting the material
  • Introducing sawdust, clay, and paper (newspaper)

bricks2.JPG

bricks3.JPG

resultmatrix.JPG

End Reflection

Failures:

  • Restrictions to conduct briquette experiments
  • Only focused on corn husks and not other materials
  • Prickly pear juice didn’t work as a binder
  • Did not calculate precise measurements (ratios, pressure)

Successes:

  • Learned about natural materials and their properties
  • Began to produce studier bricks
  • Developed relationships (good group chemistry, collaborated with the prickly pear group and other groups)
  • Had FUN

Passing the Torch (Next steps for future groups):

  • Continue exploring successful materials and combinations
  • Experiment with precise measurements and ratios
  • Conduct official tests for strength and other properties
  • Experiment with fuel briquettes and burning the material
  • Find more natural binders

Group Dynamics and Biographies:
David Hupp

  • Sophomore
  • Studying Architecture
  • Interested in Sustainable Design

Riley Jones

  • Graduate Student
  • Became interested in this class after traveling to Africa and seeing first hand the issues of implementing appropriate technology.

Jason Wilson

  • Senior
  • Business
  • Interested in Appropriate Technology through a Sustainable Environments minor.

Kevin Kusunose

  • Senior
  • Landscape Architecture
  • Interested in sustainable development.

Simo Alberti

  • Graduate Student
  • Mechanical Engineering
  • I am interested in appropriate technology and working with Pete on the Scheffler solar concentrator.

Helpful Links

Comments